Phoneme Classification Using New Feature Extraction Techniques based on Mellin Transform
نویسندگان
چکیده
This paper presents a new hierarchical phoneme recognition system using the SVM classifier and different feature representations based on mellin transform. The proposed architecture uses different representations with each group of phonemes of the speech database TIMIT which are distributed in a way to reduce the confusions between phonemes having similar articulatory strcuture. The main idea of this new architecture is based on the principle that each group of phonemes has his own characteristics which requires us to choose the adequate representation for the given group. Experiments have proven the robustness of our new hierarchical phoneme recognition system (called MMP) and the use of conventional feature representations based on mellin transform explains its superior recognition performance.
منابع مشابه
Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain
This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملFeature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملMel- and Mellin-cepstral Feature Extraction Algorithms for Face Recognition
In this article, an image feature extraction method based on two-dimensional (2D) Mellin cepstrum is introduced. The concept of one-dimensional (1D) mel-cepstrum that is widely used in speech recognition is extended to two-dimensions using both the ordinary 2D Fourier transform and the Mellin transform. The resultant feature matrices are applied to two different classifiers such as common matri...
متن کاملWavelet based feature extraction for phoneme recognition
In an effort to provide a more efficient representation of the acoustical speech signal in the pre-classification stage of a speech recognition system, we consider the application of the Best-Basis Algorithm of Coifman and Wickerhauser. This combines the advantages of using a smooth, compactly-supported wavelet basis with an adaptive time-scale analysis dependent on the problem at hand. We star...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015